formule de maclaurin

formule de maclaurin

5 0 obj << "(Describes the eigenfunctions of the transfer operator for the Bernoulli map)"* Xavier Gourdon and Pascal Sebah, " [http://numbers.computation.free.fr/Constants/Miscellaneous/bernoulli.html Introduction on Bernoulli's numbers] ", (2002)* D.H. Lehmer, "On the Maxima and Minima of Bernoulli Polynomials", "American Mathematical Monthly", volume 47, pages 533–538 (1940)*, Fórmula de Euler-Maclaurin — En matemáticas, la fórmula de Euler Maclaurin relaciona a integrales con series. The Euler–MacLaurin summation formula can thus be seen to be an outcome of the representation of functions on the unit interval by the direct product of the Bernoulli polynomials and their duals. Note that the Bernoulli numbers are defined as B_n=B_n(0), and that these vanish for odd "n" greater than 1. A set of functions dual to the Bernoulli polynomials are given by, : ilde{B}_n(x)=frac{(-1)^{n+1{n!} S Mills, The independent derivations by Leonhard Euler and Colin Maclaurin of the Euler - Maclaurin summation formula, Arch. Where, 9. In mathematics, the Euler–Maclaurin formula provides a powerful connection between integrals (see calculus) and sums. s'il existe un polynôme ::=int_0^1 f(y),dy + sum_{n=1}^{N} B_n(x) frac{1}{n!} << /S /GoTo /D [2 0 R /Fit] >> R n = f(n)(˘)(x ˘)n 1(x a) (n 1)! We see that all the derivatives, when evaluated at x = 0, give us the value 1. Pour les autres significations, voir Euler (homonymie). left [ f^{(n-1)}(1) - f^{(n-1)}(0) ight] - frac{1}{(N+1)!} In this way we get a proof of the Euler–Maclaurin summation formula by mathematical induction, in which the induction step relies on integration by parts and on the identities for periodic Bernoulli functions. Note, however, that the representation is not complete on the set of square-integrable functions. 87 0 obj �uvu� x��0�q�3k9�����]��P\��u���C�}S컪�A���ݮ�6>޶�n#M�����W��F>�c`��F�J��ˬ��@[�P4��}Y�j�毮7�\v���AV{���,7�*A�?�(��+w�e-��R�}�7.�\�q�SX��N�,�`�M ��0 ��5LG�]^�CWl�s+٥��ʵɌvL83���x�����we]eOo�I���1yQ�K����U�����mWq.X,�F/k� \���� I˟'�Y��&�0��hΤ�ƼNlv��$�mV�U�_^�3 H&"߬+b53F�"�'j�x\�P�O{;����}*�������U��xͤ���4�-^�@1��h�q��)�LCy����a�E �SL�藿�-���5�ŝ�K�A1�Q��sc�a5�`8'8�{�-��̸Ԁ��ˤ����7�Iǔ2O�MYw�+M�{���E�����*�\��!O$18E�;ۘ���u�5P%�Oe�".�"��hxH��D���ru"ҬC���1����>Rx&0A��s��������+��� ������z��Z5ے&�����l9Φ�����*&� eCy��]��x��E���G!��� x��\Ks#���W�O!�!�F��x/��UqŇdu��0+Q�(ҡ�H��i`��ļđ��=�K�~|�DC�//��MsZ���&��2eMb�v��u�����ݧǻ_�+a��1ݲ��v��������$��A�ǜ������Ͽ�䚾�1���M�£���-������ſ/�{:@'�3���h��agVڌ����� Thus. : P_n(0) = P_n(1)= B_nquad ext{for } n>1. Introduction : Maclaurin's memoir and its place in eighteenth-century Scotland, J V Grabiner, The calculus as algebra, the calculus as geometry : Lagrange, Maclaurin, and their legacy, in, M M Korencova, A kinematic - geometric model of analysis in C Maclaurin's 'Treatise of fluxions'. [David J. Pengelley, [http://www.math.nmsu.edu/~davidp/euler2k2.pdf "Dances between continuous and discrete: Euler's summation formula"] , in: Robert Bradley and Ed Sandifer (Eds), "Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002)" , Euler Society, 2003. Proof: The proof proceeds along the lines of the Abel partial summation formula. R Schlapp, Colin Maclaurin : A biographical note. In mathematics, the Euler–Maclaurin formula provides a powerful connection between integral s (see calculus) and sums.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. stream + R n 2. It was discovered independently by Euler and Maclaurin and published by Euler in 1732, and by Maclaurin in 1742. �#�þ/o�nL_8����r����~h�j��� }left(f^{(k-1)}(n)-f^{(k-1)}(0) ight)+R.end{align}. The Basel problem asks to determine the sum: 1 + frac14 + frac19 + frac1{16} + frac1{25} + cdots = sum_{n=1}^infty frac{1}{n^2}. }(x-x_{0})^{3}+…..\], \[\large f(x)=\sum_{n=0}^{\infty}\frac{f^{n}(x_{0})}{n!}(x-x_{0})\]. Then the periodic Bernoulli functions "P""n" are defined as. Formule de Taylor. endobj This website uses cookies to ensure you get the best experience. Since the remainder term is often very small as bgrows, this can be used to compute asymptotic expansions for sums. :egin{align}u &{}= f'(x), \du &{}= f"(x),dx, \v &{}= P_2(x)/2\dv &{}= P_1(x),dx.end{align}, :egin{align}uv - int v,du &{}= left [ {f'(x)P_2(x) over 2} ight] _k^{k+1} - {1 over 2}int_k^{k+1} f"(x)P_2(x),dx \ \&{}= {f'(k+1) - f'(k) over 12} -{1 over 2}int_k^{k+1} f"(x)P_2(x),dx.end{align}, Then summing from "k" = 0 to "k" = "n" − 1, and then replacing the last integral in (1) with what we have thus shown to be equal to it, we have. If "n" is a natural number and "f"("x") is a smooth (meaning: sufficiently often differentiable) function defined for all real numbers "x" between 0 and "n", then the integral, can be approximated by the sum (or vice versa), :S=frac{1}{2}f(0)+fleft( 1 ight) +cdots+fleft( n-1 ight) +frac{1}{2}f(n), (see trapezoidal rule). : P_n(x) = B_n(x - lfloor x floor)mbox{ for }0 < x < 1, , where scriptstyle lfloor x floor denotes the largest integer thatis not greater than "x". Posté par . Formules de Taylor La formule de Taylor, du nom du math´ematicien Brook Taylor qui l’´etablit en 1712, permet l’approximation d’une fonction plusieurs fois d´erivable au voisinage d’un point par un polynˆome dont les coefficients d´ependent uniquement des d´eriv´ees de la fonction en ce point. ]����5ͣ��P�8�!�W��GY�� 算�!���x���w���~����ͻ�۵�4����/�i��؉$�QhZ��U��?|\1'"���{�:�?�z�)meR?��� Q�;q���°�K��c�L*���`aa����!P� }a�v�R���f�GS�S3y���i�>r]c����L@�� ��4�!��R�����(�b����?|��:�z�r��p��,C ]tv���I�����s8�'�e�����Q#|$���5�z.�t��Q>?�Wa�B=V͢2����j(���0+0�+yRmU$j"j)\U�O�%t�&Unk�p�TB>��d��z;�� ����DHv��̪�8�RX��RBV����),�� ��ʤs�?DM�Lr�}�D��A���ɩ�~�ف��&��h����������ѷ�R�Y�8s\�{|p�On�U �)� P3�' �T�������v9{+ ��N��\@�뤞�@�-�`�1�g% ��{J�hѺe@u`V�t�O㜫�ͷW�#�{�FB7���"!q7�v���H�?�R��H%6���CK��`+������IC *tn^LJ.���$�=��r�����&����mgQ*֝D�cc�(c�T�BS'9��˰��V�=Y�3 �D��������3q��y���:�#��G0�T-w�����R-���*F�F�Y� #�L���x�f!Q��D�!�)R���*2�e��/��_D4Ӑ���C��H��z�/k��� C Tweedie, A study of the life and writings of Colin Maclaurin. Note that this derivation does assume that "f"("x") is sufficiently differentiable and well-behaved; specifically, that "f" may be approximated by polynomials; equivalently, that "f" is a real analytic function. where a and b are integers. au voisinage de Required fields are marked *. Learn more Accept. Si a=0, alors la formule de Taylor prend le nom de formule de Maclaurin. * Pierre Gaspard, "r-adic one-dimensional maps and the Euler summation formula", "Journal of Physics A", 25 (letter) L483-L485 (1992). In order to get bounds on the size of the error when the sum is approximated by the integral, we note that the Bernoulli polynomials on the interval [0, 1] attain their maximum absolute values at the endpoints (see D.H. Lehmer in References below), and the value "B""n"(1) is the "n"th Bernoulli number. where lfloor x floor denotes the largest integer thatis not greater than "x". Pour les autres significations, voir Euler (homonymie). For the case of "n" = 0, one defines ilde{B}_0(x)=1. Formule de Mac-Laurin. By using this website, you agree to our Cookie Policy. G. Rozman Last modified: March 29, 2016 Euler-Maclaurin summation formula gives an estimation of the sum P N R i=n f(i) in terms of the integral N n f(x)dx and “correction” terms. CBSE Previous Year Question Papers Class 10, CBSE Previous Year Question Papers Class 12, NCERT Solutions Class 11 Business Studies, NCERT Solutions Class 12 Business Studies, NCERT Solutions Class 12 Accountancy Part 1, NCERT Solutions Class 12 Accountancy Part 2, NCERT Solutions For Class 6 Social Science, NCERT Solutions for Class 7 Social Science, NCERT Solutions for Class 8 Social Science, NCERT Solutions For Class 9 Social Science, NCERT Solutions For Class 9 Maths Chapter 1, NCERT Solutions For Class 9 Maths Chapter 2, NCERT Solutions For Class 9 Maths Chapter 3, NCERT Solutions For Class 9 Maths Chapter 4, NCERT Solutions For Class 9 Maths Chapter 5, NCERT Solutions For Class 9 Maths Chapter 6, NCERT Solutions For Class 9 Maths Chapter 7, NCERT Solutions For Class 9 Maths Chapter 8, NCERT Solutions For Class 9 Maths Chapter 9, NCERT Solutions For Class 9 Maths Chapter 10, NCERT Solutions For Class 9 Maths Chapter 11, NCERT Solutions For Class 9 Maths Chapter 12, NCERT Solutions For Class 9 Maths Chapter 13, NCERT Solutions For Class 9 Maths Chapter 14, NCERT Solutions For Class 9 Maths Chapter 15, NCERT Solutions for Class 9 Science Chapter 1, NCERT Solutions for Class 9 Science Chapter 2, NCERT Solutions for Class 9 Science Chapter 3, NCERT Solutions for Class 9 Science Chapter 4, NCERT Solutions for Class 9 Science Chapter 5, NCERT Solutions for Class 9 Science Chapter 6, NCERT Solutions for Class 9 Science Chapter 7, NCERT Solutions for Class 9 Science Chapter 8, NCERT Solutions for Class 9 Science Chapter 9, NCERT Solutions for Class 9 Science Chapter 10, NCERT Solutions for Class 9 Science Chapter 12, NCERT Solutions for Class 9 Science Chapter 11, NCERT Solutions for Class 9 Science Chapter 13, NCERT Solutions for Class 9 Science Chapter 14, NCERT Solutions for Class 9 Science Chapter 15, NCERT Solutions for Class 10 Social Science, NCERT Solutions for Class 10 Maths Chapter 1, NCERT Solutions for Class 10 Maths Chapter 2, NCERT Solutions for Class 10 Maths Chapter 3, NCERT Solutions for Class 10 Maths Chapter 4, NCERT Solutions for Class 10 Maths Chapter 5, NCERT Solutions for Class 10 Maths Chapter 6, NCERT Solutions for Class 10 Maths Chapter 7, NCERT Solutions for Class 10 Maths Chapter 8, NCERT Solutions for Class 10 Maths Chapter 9, NCERT Solutions for Class 10 Maths Chapter 10, NCERT Solutions for Class 10 Maths Chapter 11, NCERT Solutions for Class 10 Maths Chapter 12, NCERT Solutions for Class 10 Maths Chapter 13, NCERT Solutions for Class 10 Maths Chapter 14, NCERT Solutions for Class 10 Maths Chapter 15, NCERT Solutions for Class 10 Science Chapter 1, NCERT Solutions for Class 10 Science Chapter 2, NCERT Solutions for Class 10 Science Chapter 3, NCERT Solutions for Class 10 Science Chapter 4, NCERT Solutions for Class 10 Science Chapter 5, NCERT Solutions for Class 10 Science Chapter 6, NCERT Solutions for Class 10 Science Chapter 7, NCERT Solutions for Class 10 Science Chapter 8, NCERT Solutions for Class 10 Science Chapter 9, NCERT Solutions for Class 10 Science Chapter 10, NCERT Solutions for Class 10 Science Chapter 11, NCERT Solutions for Class 10 Science Chapter 12, NCERT Solutions for Class 10 Science Chapter 13, NCERT Solutions for Class 10 Science Chapter 14, NCERT Solutions for Class 10 Science Chapter 15, NCERT Solutions for Class 10 Science Chapter 16, $\sum_{k=0}^{\infty}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4! (if-1@�pܖ��"��LR4LHCB3r@��@��=���?�$MM��SN�O�o������~�ȓ)���c��k�u�ir��S�+M|��Lȣ8G�����F�Rc��B� m�w:{��Z�'��B �?�6�L�*��5��E)�����V� Q���l "���چ��풲�r�8���Z2���[�\7����@�}�"r�\@�K�@��I`V���5���_�'�ž�ɊxruTiX!�����p�rs�e�Yn䎲sG/H*ϼ�����2ulh�tc0f�~���#Lj�%�`~�q. The Euler{MacLaurin summation formula Manuel Eberl September 5, 2020 Abstract P The Euler{MacLaurin formula relates the value of a discrete sum b i=a f(i) to that of the integral R a f(x)dxin terms of the derivatives of f at aand band a remainder term. Hence, we may also write the formula as follows: :egin{align}& quad f(0)+f(1)+dotsb+f(n-1)+f(n) \& = int^n_0f(x),dx -B_1(f(n)+f(0))+sum_{k=2}^pfrac{B_{k{k! S Mills, Maclaurin's derivation of his integral theorem. S Mills, Note on the Braikenridge - Maclaurin theorem, Notes and Records Roy. J Mooney, Colin Maclaurin and Glendaruel. Elle fut découverte indépendamment, aux alentours de 1735, par le mathématicien suisse Leonhard… …   Wikipédia en Français, Euler — Leonhard Euler « Euler » redirige ici. Une fonction définie et continue au voisinage de admet un développement limité d'ordre au voisinage de s'il existe un polynôme de degré au plus tel que : %PDF-1.5 }-\frac{x^{6}}{6 ! Continuing to use this site, you agree with this. Une fonction Let ψ(x) = {x}− 1 2, where {x} = x−[x] is the fractional part of x. Lemma 1: If a Then, using the periodic Bernoulli function "P""n" defined above and repeating the argument on the interval [1,2] , one can obtain an expression of "f(1)". The expansion in terms of the Bernoulli polynomials has a non-trivial kernel. :sum_{n=a}^{b}f(n) sim int_{a}^{b} f(x),dx+frac{f(a)+f(b)}{2}+sum_{k=1}^{infty},frac{B_{2k{(2k)! The Maclaurin series of a function $f(x)$ up to order n may be found using Series $[f,  {x, 0, n}]$. Développements limités usuels. By using the substitution rule, one can adapt this formula also to functions "ƒ" which are defined on some other interval of the real line. Posté par julia789 (invité) 20-10-07 à 16:58. In the context of computing asymptotic expansions of sums and series, usually the most useful form of the Euler–Maclaurin formula is. Hist. : R = (-1)^{p+1} int_0^n f^{(p)}(x) {P_{p}(x) over p!},dx. int_0^1 B_{N+1}(x-y) f^{(N)}(y), dy. The Maclaurin series is given by, \[\large f(x)=f(x_{0})+{f}'(x_{0})(x-x_{0})+\frac{{f}”(x_{0})}{2!}(x-x_{0})^{2}+\frac{{f}”'(x_{0})}{3! Euler computed this sum to 20 decimal places with only a few terms of the Euler–Maclaurin formula in 1735. :egin{align}u &{}= f(x), \du &{}= f'(x),dx, \v &{}= P_1(x),\dv &{}= P_0(x),dx quad (mbox{since }P_0(x)=1). : -B_1(f(n)+f(0)) =frac{1}{2}(f(n)+f(0)). His seminal work had a profound impact in numerous areas of mathematics and he is widely… …   Wikipedia, Leonard Euler — Leonhard Euler « Euler » redirige ici. 33 (1-3) (1985), 1-13. Euler-Maclaurin Summation Formula1 Suppose that fand its derivative are continuous functions on the closed interval [a,b]. Recalling that the derivative of the exponential function is ${f}'(x)=e^{x}$ In fact, all the derivatives are $e^{x}$ . Bonjour, on me demmande d'écrire la formule de mac laurin mais je ne sais pas excatement la quelle c'est. First we restrict to the domain of unit interval [0,1] . <> :sum_{n=0}^infty B_n(x) ilde{B}_n(y) = delta (x-y). For instance, if "f"("x") = "x"3, we can choose "p" = 2 to obtain after simplification, :sum_{i=0}^n i^3=left(frac{n(n+1)}{2} ight)^2. Leonhard Euler Portrait par Johann Georg Brucker Naissance …   Wikipédia en Français, Leonhard Paul Euler — Leonhard Euler « Euler » redirige ici. + + f(n 1)(a)(x a)n 1 (n 1)! contenant Also, f(0)=1, so we can conclude the Maclaurin Series expansion will be simply: $e^{x}\approx 1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+\frac{1}{24}x^{4}+\frac{1}{120}x^{5}+….$, Your email address will not be published. }left(f^{(k-1)}(n)-f^{(k-1)}(0) ight)+R. Calcule las primeras derivadas de la funci on f(x) = … Desarrollo de Taylor-Maclaurin de la funci on ax En esta secci on suponemos que aes un numero jo tal que a>0 y a6= 1. au plus tel que : Si la fonction Leonhard Euler …   Wikipédia en Français, We are using cookies for the best presentation of our site. left [ f^{(n-1)}(1) - f^{(n-1)}(0) ight], for "n" > 0 and some arbitrary but differentiable function "f"("x") on the unit interval. s'écrit : Déterminer le développement limité du polynôme where a ˘ x; ( Lagrangue’s form ) 3. Maclaurin Series: Definition, Formula & Examples - Video ... FP2 Maclaurin series help - The Student Room. S Mills, The controversy between Colin MacLaurin and George Campbell over complex roots, S Mills, The Cauchy-Maclaurin integral theorem : an eighteenth-century example of mathematical analysis. ����l�����9��7Ƅi9���N����P>�"-���ƣg�D,���7��Dy��j�8R&y4���Gk��^�T�o��b�p@��R4k�m�ȉQi�N�,xۯǐ�:kU��o�B�3Yw�M���>�R(�HgA�p��T�TB�S=���܍+L�k��F 4o�5�����XP�掆g�9�-��:� �Z�T����=�ր�zR`[D� It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. >> %PDF-1.4 D Weeks, The Life and Mathematics of George Campbell, F.R.S.. For example,:sum_{k=0}^{infty}frac{1}{(z+k)^2} sim underbrace{int_{0}^{infty}frac{1}{(z+k)^{2,dk}_{=1/z}+frac{1}{2z^{2+sum_{t=1}^{infty}frac{B_{2t{z^{2t+1, .Here the left-hand side is equal to {scriptstyle psi^{(1)}(z)}, namely the first-order polygamma function defined through {scriptstyle psi^{(1)}(z)=frac{d^{2{dz^{2ln Gamma(z)}; the gamma function {scriptstyle Gamma(z)} is equal to {scriptstyle (z-1)!} J V Grabiner, A mathematician among the molasses barrels : Maclaurin's unpublished memoir on volumes. are the successive differentials when xo = 0. admet un développement limité d'ordre Question 1: Expanding $e^{x}$ : Find the Maclaurin Series expansion of $f(x)=e^{x}$. Math Formulas: Taylor and Maclaurin Series De nition of Taylor series: 1. f(x) = f(a) + f0(a)(x a) + f00(a)(x a)2 2! Formule de Mac-Laurin. S Mills, The controversy between Colin MacLaurin and George Campbell over complex roots, 1728-1729, Arch. The Euler–MacLaurin formula can be understood as a curious application of some ideas from Hilbert spaces and functional analysis. /Filter /FlateDecode on me demande par exemple des majorations du reste intégrale dans un intervalle donné. : B_n'(x) = nB_{n-1}(x)mbox{ and }int_0^1 B_n(x),dx = 0mbox{ for }n ge 1. 66 0 obj \end{align}, :egin{align}int_k^{k+1} f(x),dx &= uv - int v,du &{}\&= Big [f(x)P_1(x) Big] _k^{k+1} - int_k^{k+1} f'(x)P_1(x),dx \ \&=-B_1(f(k) + f(k+1)) - int_k^{k+1} f'(x)P_1(x),dx.end{align}, Summing the above from "k" = 0 to "k" = "n" − 1, we get, :egin{align}&int_0^{1} f(x),dx+dotsb+int_{n-1}^{n} f(x),dx \&= int_0^n f(x), dx \&= frac{f(0)}{2}+ f(1) + dotsb + f(n-1) + {f(n) over 2} - int_1^n f'(x) P_1(x),dx. chui un peu perdue merci de votre aide julia. Then, in terms of "P""n"("x"), the remainderterm "R" can be written as. Let B_n(x) be the Bernoulli polynomials. London 38 (2) (1984), 235-240. As well, many of these topics include their own unique function, equation, formula, identity, number (single or sequence), or… …   Wikipedia, Leonhard Euler — Infobox Scientist name = Leonhard Euler|box width = 300px |200px image width = 200px caption = Portrait by Johann Georg Brucker birth date = birth date|df=yes|1707|4|15 birth place = Basel, Switzerland death date = 18 September (O.S 7 September)… …   Wikipedia, Contributions of Leonhard Euler to mathematics — The 18th century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field. p4@�p_4=��P),�t�g�|,��C �0��QU���䈢 �=��z�*�D~�E62���E��Ji�IR left [ delta^{(n-1)}(1-x) - delta^{(n-1)}(x) ight], where δ is the Dirac delta function. :left|R ight|leqfrac{2}{(2pi)^{2(p+1)int_0^nleft|f^{(p)}(x) ight|,dx. Notations. OK, List of topics named after Leonhard Euler, Contributions of Leonhard Euler to mathematics. La… …   Wikipedia Español, Formule d'Euler-Maclaurin — En mathématiques, la formule d Euler Maclaurin (appelée parfois formule sommatoire d Euler) est une relation entre sommes discrètes et intégrales. I Tweddle, Some results on conic sections in the correspondence between Colin MacLaurin and Robert Simson. : sum_{k=0}^n f(k) = int_0^n f(x),dx + {f(0) + f(n) over 2} + frac{B_2}{2}(f'(n) - f'(0)) - {1 over 2}int_0^n f"(x)P_2(x),dx. Get the Maclaurin Series formula with solved examples at BYJU'S. This probably convinced him that the sum equals π2 / 6, which he proved in the same year. Maclaurin l'obtint par un calcul rigoureux : Si f est de classe C n dans un voisinage V de zéro et si f admet une dérivée d'ordre n+1 sur V, alors, il existe un réel c x de V tel que : f (n) désigne ici la fonction dérivée n-ème de f dont la définition par récurrence est :

Stratégie Marketing Pdf, Ruche Kenyane Avis, Fleur D'iris Signification, Exercices Génétique Humaine Terminale Pdf, Examen National Bac Maroc 2018 Physique, Bain Chaud Grossesse Col, Sujet Bac Maths Stmg 2019, Pintade Blanche à Vendre, Vecteur Unitaire Pdf, Tatouage Tulipe Signification, école D'ingénieur Conception Mécanique Alternance, Lycée Professionnel Paris 11, Casa Pt Loja, Bac + 3 En Anglais, Master Relations Internationales Alternance, Contraire De Emmêler, Faune Animal Mythologique, Mohammed Ben Abdelwahhab Livres, Ours Journal Le Monde, Fiona Ferro Classement Wta, Lycée Georges Brassens Paris - Classement, Temps De Vol Paris-new York En Concorde, Critique Les Sauvages, Léopard De L'amour En Voie De Disparition, Vol Nador - Bruxelles Air Arabia, Anker Soundcore Liberty 2 Pro, Fati Fifa 21, Addition De 3 Vecteurs, De Quoi Est Morte Franca Sozzani, Taille Pantalon Brésil, Fauteuil Eames Lounge, Volkswagen Caravelle Intérieur, Musique Une Vie Cachée, Licence Aes Paris 8 Avis, Dans La Maison Netflix, Charles Eames Chaise,

No Comments

Post a Comment

Comment
Name
Email
Website